Università degli Studi di Perugia

Insegnamento MATEMATICA

Nome del corso Geologia
Codice insegnamento GP004846
Sede PERUGIA
Curriculum Comune a tutti i curricula
Docente responsabile Irene Benedetti
CFU 12
Regolamento Coorte 2017
Erogato Erogato nel 2017/18
Erogato altro regolamento
Periodo Annuale
Tipo insegnamento Obbligatorio (Required)
Tipo attività Attività formativa integrata
Suddivisione

MATEMATICA - MOD. 1

Codice GP004853
Sede PERUGIA
CFU 6
Docente responsabile Tiziana Cardinali
Docenti
  • Tiziana Cardinali - Didattica Ufficiale
Ore
  • 42 Ore - Didattica Ufficiale - Tiziana Cardinali
Attività Base
Ambito Discipline matematiche
Settore MAT/05
Tipo insegnamento Obbligatorio (Required)
Lingua insegnamento Italiano
Contenuti Introduzione ai concetti di base dell'Analisi Matematica.
Succession numeriche.
Calcolo di limiti, continuità e derivazione per funzioni di una variabile, ricerca dei massimi e minimi.
Testi di riferimento Paolo Marcellini, Carlo Sbordone : Elementi di Calcolo - Versione semplificata per i nuovi corsi di laurea, Ed. Liguori
Obiettivi formativi Essendo l'insegnamento l'unico corso di Matematica per il Corso di Laurea Triennale in Geologia, esso fornisce gli strumenti matematici di base utili per ia comprensione degli argomenti trattati nei corsi di ambito geologico.

Al termine dello svolgimento di entrambi i moduli in cui il corso è suddiviso, lo studente avrà acquisito:

- le conoscenze fondamentali di analisi matematica, quali ad esempio il calcolo della derivata per funzioni di una o più variabili e il calcolo di semplici integrali di funzioni di una variabile. Inoltre deve saper effettuare uno studio completo di una funzione di una variabile e saper risolvere semplici problemi di ottimizzazione per funzioni di una o più variabili.

- sarà in grado di applicare i metodi dell'analisi matematica al fine di risolvere problemi, anche di natura applicativa.

- Abilità comunicative:
avrà acquisito la capacità di esprimere i concetti fondamentali dell'analisi matematica con un certo rigore.

- Capacità di apprendimento: lo studente acquisirà la capacità di studiare e apprendere le nozioni di analisi matematica, anche al fine di utilizzarle per la risoluzione di semplici problemi di natura applicativa.
Prerequisiti Al fine di comprendere e saper applicare le tecniche descritte nell'insegnamento è necessario aver appreso ed assimilato i concetti matematici di base quali:

elementi di base di geometria euclidea e analitica;

risoluzione di equazioni e disequazioni algebriche di primo e secondo grado;

definizioni e prime proprietà delle funzioni polinomiali, esponenziali, logaritmiche e trigonometriche.
Metodi didattici Lezioni frontali (42 ore) in aula su tutti gli argomenti del corso.

Verranno presentati esempi ed esercizi per spiegare ed analizzare i concetti teorici.



E' prevista attività di Tutoraggio. Tale Tutoraggio, coordinato dal docente, avrà come obbiettivo quello di aiutare gli studenti nello studio e nella comprensione degli argomenti del corso, con particolare attenzione allo svolgimento degli esercizi.
Altre informazioni La data di inizio e termine delle lezioni del primo semestre è reperibile all'indirizzo:

http://www.fisgeo.unipg.it/joo3x/index.php/it/didattica/corsi-di-laurea-in-geologia/orari-calendari-sessioni-geologia.htm

Il corso si svolge in 42 ore e ogni settimana sono previste da calendario 4 ore frontali. Il calendario delle lezioni e' disponibile alla pagina web

http://www.fisgeo.unipg.it/joo3x/index.php/it/didattica/corsi-di-laurea-in-geologia/orari-calendari-sessioni-geologia.html

Il ricevimento studenti per il corso si articola secondo l'orario indicato sulla pagina web: http://www.dmi.unipg.it/MatematicaOrarioRicevimento , presso lo studio del docente al quinto piano del Dipartimento di Matematica e Informatica.

Il calendario degli esami è reperibile all'indirizzo:

http://www.fisgeo.unipg.it/joo3x/index.php/it/didattica/corsi-di-laurea-in-geologia/orari-calendari-sessioni-geologia.html

Nell'orario di ricevimento gli studenti verranno seguiti in modo personalizzato.

Frequenza:
Facoltativa ma fortemente consigliata.

E' prevista attività di studio collettiva in presenza dell'insegnante e/o di un tutor.

La frequenza è fortemente consigliata soprattutto per gli studenti che non superano il test di ingresso.

Il ricevimento studenti per il corso si articola secondo l'orario indicato sulla pagina web:

http://www.dmi.unipg.it/MatematicaOrarioRicevimento , presso lo studio del docente al quarto piano del Dipartimento di Matematica e Informatica.

Sono previste delle ore di supporto alla didattica che sono ore di attività di studio collettiva, Tale attività è
fortemente consigliata soprattutto per gli studenti che non superano il test di ingresso.

Il ricevimento studenti per il corso si articola secondo l'orario indicato sulla pagina web:

http://www.dmi.unipg.it/MatematicaOrarioRicevimento , presso lo studio del docente al quarto piano del Dipartimento di Matematica e Informatica.

Materiale e notizie relative al corso sono reperibili all'indirizzo:

https://www.unistudium.unipg.it/unistudium/

Nell'orario di ricevimento gli studenti verranno seguiti in modo personalizzato.


Durante la prova scritta sono vietati calcolatrici scientifiche, telefoni cellulari, iPods, etc.... pena l'esclusione dalla prova.
Modalità di verifica dell'apprendimento Esame: Alla fine di entrambi i due moduli avrà luogo l'esame che consisterà nello svolgimento di una prova scritta riguardante il programma svolto nei due moduli.
La prova scritta consiste nella soluzione di un problema e di alcuni quesiti a scelta multipla relativi agli argomenti presentati nei due moduli. La prova ha la durata di non più di quattro ore ed è finalizzata a verificare le capacità di saper utilizzare gli strumenti matematici che sono stati forniti durante tutto il corso oltre che di applicare correttamente le conoscenze teoriche.

La prova scritta può essere facilitata o addirittura sostituita da quattro prove in itinere, due collocate nel primo semestre e due nel secondo. Le prime tre prove in itinere, della durata di un'ora ciascuna, consistono unicamente in quesiti a scelta multipla, mentre l'ultima prova in itinere (della durata di due ore) richiede la risoluzione esplicita di un problema a risposta aperta riguardante gli argomenti presentati in entrambi i moduli.

Delle prove in itinere che durante l'anno hanno ottenuto una votazione maggiore o uguale a 18/30 verrà consevata memoria nello svolgimento della prova finale e possono sostituire completamente la prova scritta finale qualora risultino tutte sufficienti.

Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa
Programma esteso Introduzione ai concetti di base dell'Analisi Matematica: insiemi, operazioni tra insiemi, numeri razionali e numeri reali, concetti di massimo e minimo, estremo superiore ed estremo inferiore, potenze e radicali, esponenziali e logaritmi.
Successioni numeriche. Funzioni di una variabile: dominio di una funzione, funzioni composte e inverse, funzioni continue. Funzioni elementari.
Limiti di successioni e limiti di funzioni di una variabile. Teorema dei carabinieri, teorema della permanenza del segno, algebra dei limiti, limiti notevoli, , calcolo dei limiti. Continuità, asintoti.
Calcolo differenziale per funzioni di una variabile: derivata di una funzione, regole di calcolo delle derivate: derivata della somma di funzioni, del prodotto di funzioni, del quoziente di funzioni, di composizione di funzioni, della funzione inversa. Il teorema del valor medio e sue conseguenze, il Teorema di de l'Hospital. Ricerca di massimi e minimi. Derivata seconda: significato geometrico della derivata seconda, concavità, convessità.
Studio del grafico di funzione.

MATEMATICA - MOD. 2

Codice GP004854
Sede PERUGIA
CFU 6
Docente responsabile Irene Benedetti
Docenti
  • Irene Benedetti - Didattica Ufficiale
Ore
  • 42 Ore - Didattica Ufficiale - Irene Benedetti
Attività Affine/integrativa
Ambito Attività formative affini o integrative
Settore MAT/05
Tipo insegnamento Obbligatorio (Required)
Lingua insegnamento italiano
Contenuti - Integrazione
- Elementi di Algebra lineare
- Funzioni di due variabili: ricerca di massimi e minimi
Testi di riferimento Paolo Marcellini, Carlo Sbordone : Elementi di Calcolo - Versione semplificata per i nuovi corsi di laurea, Ed. Liguori
Obiettivi formativi L'insegnamento è l'unico corso di Matematica per il Corso di Laurea Triennale in Geolgia, pertanto fornisce gli strumenti matematici di base utili per ia comprensione degli argomenti trattati nei corsi di ambito geologico.
Al termine del corso lo studente deve essere in grado di risolvere alcuni integrali semplici, di analizzare una funzione in due variabili, in particolare per quanto riguarda lo studio dei massimi e dei minimi. Tale analisi è utile per la formazione di un geologo nel caso di studio di carte topografiche. Infine deve essere in grado di risolvere semplici problemi di analisi lineare, avendo imparato i metodi risolutivi dal punto di vista teorico, può poi eventualmente implementarli al computer.
Capacita' di risolvere esercizi relativi agli argomenti elencati, e di rispondere a quesiti a scelta multipla relativi ai medesimi argomenti.
Prerequisiti Al fine di comprendere e saper applicare le tecniche descritte nell'insegnamento è necessario aver appreso ed assimilato i concetti matematici di base quali:
elementi di base di geometria euclidea e analitica;
risoluzione di equazioni e disequazioni algebriche di primo e secondo grado;
definizioni e prime proprietà delle funzioni polinomiali, esponenziali, logaritmiche e trigonometriche.
Metodi didattici Lezioni frontali ed esercitazioni.
Le lezioni frontali sono coadiuvate da slide che sintetizzano la parte teroica del corso.
Contestualmente verranno presentati alla lavagna esempi ed esercizi per spiegare ed analizzare i concetti teorici.
ll corso si svolge in 42 ore di lezioni frontali e il calendario delle lezioni e' disponibile alla pagina web:
http://fisgeo.unipg.it/joo3x/index.php/it/didattica/corsi-di-laurea-in-geologia/orari-calendari-sessioni-geologia.html
Altre informazioni Quando possibile, le lezioni frontali verranno coadiuvate da due ore settimanali di attività di studio collettiva in presenza dell'insegnante oppure di un tutore.
Il ricevimento studenti per il corso si articola secondo l'orario indicato sulla pagina web:
http://www.dmi.unipg.it/MatematicaOrarioRicevimento
presso lo studio del docente al quarto piano del Dipartimento di Matematica e Informatica.
Modalità di verifica dell'apprendimento Alla fine di entrambi i due moduli avrà luogo l'esame che consisterà nello svolgimento di una prova scritta riguardante il programma svolto nei due moduli.
La prova scritta consiste nella soluzione di un problema e di alcuni quesiti a scelta multipla relativi agli argomenti presentati nei due moduli. La prova ha la durata di tre ore ed è finalizzata a verificare le capacità di saper utilizzare gli strumenti matematici che sono stati forniti durante tutto il corso oltre che di applicare correttamente le conoscenze teoriche.
La prova scritta può essere facilitata o addirittura sostituita da quattro prove in itinere, due collocate nel primo semestre e due nel secondo. Le prime tre prove in itinere, della durata di un'ora ciascuna, consistono unicamente in quesiti a scelta multipla, mentre l'ultima prova in itinere (della durata di due ore) richiede la risoluzione esplicita di un problema riguardante gli argomenti presentati in entrambi i moduli. Delle prove in itinere che durante l'anno hanno ottenuto una votazione maggiore o uguale a 18/30 verrà consevata memoria nello svolgimento della prova finale e possono sostituire completamente la prova scritta finale qualora risultino tutte sufficienti.
Il calendario degli esami è reperibile all'indirizzo:
http://fisgeo.unipg.it/joo3x/index.php/it/didattica/corsi-di-laurea-in-geologia/orari-calendari-sessioni-geologia.html

Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa
Programma esteso Integrazione: definizione di integrale, significato geometrico, Teorema della Media. Primitive, Teorema di Torricelli-Barrow e tabella degli integrali immediati. Integrazione per parti e per sostituzione. Integrazione di semplici funzioni razionali fratte. (14 ore)
Elementi di algebra lineare: matrici, prodotti tra vettori nel piano e nello spazio. Determinante e rango: regole di calcolo e significato geometrico. Sistemi di equazioni lineari, Teorema di Ruche'-Capelli. Regola di Cramer per la soluzione di sistemi lineari. Esempi di sistemi parametrici. (14 ore)
Funzioni di due variabili; calcolo del dominio. Derivate parziali, derivate direzionali, gradiente e punti critici. Derivate seconde, Lemma di Schwartz e calcolo dell'hessiano. Ricerca di semplici massimi e minimi vincolati su insiemi compatti del piano. (14 ore)