Università degli Studi di Perugia

Vai al contenuto principale

Insegnamento COMPUTATIONAL CHEMISTRY

Nome del corso Scienze chimiche
Codice insegnamento A001124
Curriculum Theoretical chemistry and computational modelling
Docente responsabile Andrea Lombardi
Docenti
  • Andrea Lombardi - Didattica Ufficiale
Ore
  • 42 Ore - Didattica Ufficiale - Andrea Lombardi
CFU 6
Regolamento Coorte 2019
Erogato Erogato nel 2019/20
Erogato altro regolamento
Attività Caratterizzante
Ambito Discipline chimiche inorganiche e chimico-fisiche
Settore CHIM/03
Tipo insegnamento Obbligatorio (Required)
Tipo attività Attività formativa monodisciplinare
Lingua insegnamento INGLESE
Contenuti Introduzione all'uso degli strumenti informatici nella chimica moderna. Breve introduzione e richiami di sistemi operativi, editor e linguaggi di programmazione.

-Classificazione delle metodologie esistenti, in termini di metodi quantistici, semiclassici, classici e statistici;

Principali problematiche di interesse nella chimica computazionale
- calcolo di strutture elettroniche;
- ottimizzazione di strutture molecolari, ricerca di minimi su superfici di energia potenziali
- costruzione e studio delle di superfici di energia potenziale
- interazioni intermolecolari
- dinamica molecolare classica e quantistica, metodi misti (QM/MM)

Al fine di facilitare l'apprendimento, i principali contenuti del corso sono intervallati da periodici richiami a aspetti di base della meccanica classica e quantistica e statistica.

Il corso sarà arricchito da esempi di applicazioni delle tecniche e metodi studiati.

Sono previste esercitazioni in aula, svolte attraverso l'accesso a cluster virtuali.

Seminari di docenti e ricercatori attivi nel campo della chimica computazionale arricchiranno ulteriormente il corso.
Testi di riferimento Dispense fornite dal docente e riferimenti bibliografici.
Testi opzionali:
-Errol G. Lewars, Computational
Chemistry
-Frank Jensen, Introduction to Computational Chemistry
Obiettivi formativi Obiettivi del corso sono:
- le basi teoriche della chimica computazionale
-una conoscenza generale delle applicazioni: fattibilità, limitazioni e vantaggi.
- lo sviluppo di un approccio pratico all'applicazione dei metodi computazionali alla modellistica molecolare e biomolecolare.
Prerequisiti Conoscenze di base di programmazione. Conoscenze matematiche di algebra lineare e analisi matematica e teoria dei gruppi. Conoscenze di base di meccanica classica e quantistica.
Metodi didattici Lezioni frontali, esercitazioni pratiche al calcolatore
Altre informazioni Periodo: Ottobre-Dicembre 2019.

Dove: biblioteca di chimica generale, piano terzo, presso Dipartimento di Chimica, Biologia e Biotecnologie in Via Elce di Sotto
Modalità di verifica dell'apprendimento Presentazione di seminari individuali da parte degli studenti su argomenti inerenti il corso

Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa
Programma esteso 1) Introduzione al calcolo scientifico e alla chimica computazionale

1.1 Definizione di chimica computazionale e suo ruolo nella scienza contemporanea

1.2 Calcolatori: sistemi operativi (LINUX), "shell" e editori di testo.

1.3 Breve rivista di linguaggi di programmazione.

1.4 Calcolo parallelo e calcolo distribuito.

2) Richiami di meccanica classica e quantistica.

2.1 Metodi quantistici nei problemi molecolari

2.2 Metodi semiclassici e classici nella dinamica molecolare

3) Superfici di energia potenziale

3.1 Metodi quantistici per sistemi elementari

3.2 Interazioni intermolecolari

3.3 Meccanica molecolare e "Force Fields" per sistemi complessi

4) Simulazioni di dinamica molecolare

4.1 Dinamica molecolare classica

4.2 Metodi QM/MM

5) Esplorazione di superfici di energia potenziale

5.1 Punti stazionari, minimo globale, minimi locali e punti di sella

5.2 Metodi per la ricerca di minimi di energia

5.3 Cammini di reazione e isomerizzazione

6) Richiami di Meccanica Statistica


7) Simulazione di sistemi estesi

7.1 Condizioni periodiche al contorno

7.2 Simulazione di superfici, solidi e liquidi

8) Modellistica di biomolecole

8.1 Database di proprietà strutturali di biomolecole

8.2 Simulazione di biomolecole
Vai a inizio pagina
Sommario
×