Unit AEROSPACE MATERIALS

Course
Sustainable materials and processes engineering
Study-unit Code
A002446
Curriculum
Materiali per l'aerospazio
Teacher
Maurizio Natali
CFU
10
Course Regulation
Coorte 2021
Offered
2022/23
Type of study-unit
Obbligatorio (Required)
Type of learning activities
Attività formativa integrata

HIGH TEMPERATURE MATERIALS FOR AEROSPACE APPLICATIONS

Code A002448
CFU 5
Teacher Maurizio Natali
Teachers
  • Maurizio Natali
Hours
  • 50 ore - Maurizio Natali
Learning activities Caratterizzante
Area Discipline dell'ingegneria
Academic discipline ING-IND/22
Type of study-unit Obbligatorio (Required)
Language of instruction ENGLISH
Contents This course will provide a detailed overview of high-temperature materials -also known as Thermal Protection System (TPS) materials - and will cover the manufacturing, the traditional and advanced thermal and thermo-mechanical testing. TPS materials are used in the production of the heat shields of probes and space vehicles and are also used in the production of chemical propulsion systems such as liquid fueled rocket engines or solid (or hybrid) rocket motors.
At the end of the course, the student will be able to correctly identify the use of each class of high-temperature materials, helping her/him to get quickly integrated in the sector of the aerospace industry.
Reference texts - P.K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press, [3 or 4 ed.].
- Ronald Gibson, Principles of Composite Material Mechanics, McGraw-Hill Science/Engineering/Math.
- G.F. D'Alelio and J. A. Parker, Ablative Plastics, 1971.
- Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, Fundamentals of Heat and Mass Transfer [6 ed.].
Other lecture notes or papers provided by the teacher.
Educational objectives The student will be guided to understand the fundamental concepts behind the theory of TPS materials. At the end of the course the student will possess the basic tools at the base of the design of TPS materials.
Prerequisites Basic knowledge of mathematics, physics, chemistry, structural mechanics, polymers.
Teaching methods The course will based on lectures and will make extensive use of Powerpoint presentations, theoretical exercises and laboratory experiences.
The course will be balanced in terms of theoretical and experimental concepts, providing a unique approach aimed at maximize the effectiveness of the teaching activity.
Learning verification modality Written exam + oral exam.
Extended program Introduction to the different hyperthermal environments: the atmospheric reentry flight and classification based on heat fluxes, generalities on chemical propulsion, liquid engines and solid or hybrid rocket motors, specific and total impulse, the de Laval nozzle, structural materials the motor case, thrust vectoring;
- Introduction to high temperature materials or Thermal Protection System (TPS);
- Non-ablative TPS materials for atmospheric reentry: generalities on non-ablative TPS materials, low density ceramic materials, manufacturing processes, diffusion and sintering, Reusable Surface Insulation, the Space Shuttle heat shield;
- Ablative TPS materials: refractory metals, ceramics, carbon materials, graphite, mechanisms of erosion and thermo-oxidation, introduction to polymeric ablative TPS materials, application examples in rocket propulsion;
- Insulating materials: elastomeric matrix (EPDM and silicone), production methods (calendering, kneader, etc.), examples of EPDM/Kevlar formulations, SLA-561V, DC 93-104; vulcanization, peroxides, specific applications, rigid matrix insulating materials, production methods, wood, cork (P50);
- Fiber-reinforced TPS materials: matrix classification, thermal and dimensional stability, phenolic matrices, cure cycles, carbon yield, generalities on fibers (glass, basalt, silica, carbon), surface treatment, fillers, thermal and mechanical properties of fiber-reinforced TPS materials;
- Nanostructured TPS materials: introduction, differences between low and high heat flux ablation mechanisms;
- Carbon/phenolic type fiber-reinforced TPS materials: fiber fabrication process (Rayon, PAN and pitch), differences between fiber types in terms of chemical functionalization and affinity to different polymer matrices, thermal and mechanical properties, production techniques of carbon/phenolic composites, applications, hints on sizing a carbon/phenolic laminate (new review);
- Basic thermophysical characterization of TPS materials: thermodynamics, definition of heat capacity, thermal conductivity, temperature measurement theory, Seebeck effect, types of thermocouples, data acquisition systems, thermal characterization techniques (TGA/DTG/DTA, DSC, LFA), dimensional stability, characterization techniques (TMA), role of heating rate;
- Advanced thermophysical characterization;
- Advanced characterization of TPS materials: thermal conditions, chemical conditions, mechanical conditions, types of torches (plasma, arc-jet, HVOF, etc.), oxy-acetylene torch, determination of heat flux, calibration, types of calorimeters (slug, Gardon gages, etc.), role of oxidizer/fuel ratio, test examples, morphological characterization of flame-exposed surface, definition of mass loss and erosion rate, post-test and real time erosion rate measurement systems;
- Advanced characterization of TPS materials using liquid propellant engine-based test beds, solid propellant engine-based test beds, NASA MSFC test system, hybrid engine-based test beds, X-ray analysis of TPS materials.
- Ultra lightweight TPS materials: Lightweight Ceramic Ablators, Phenolic Impregnated Carbon Ablators, manufacturing methods;
- Introduction to modeling ablative phenomena: introduction to mathematics governing the degradation of materials, degradation kinetics (Friedman's methods, Ozawa, etc.), Arrhenius' law determination of kinetic parameters by TGA, rule of mixtures, modeling of the thermal conductivity and heat capacity also as a function of temperature, mechanical erosion, differences between surface and volume ablation.

PROCESSING AND PROPERTIES OF COMPOSITES

Code A002447
CFU 5
Teacher Maurizio Natali
Teachers
  • Maurizio Natali
Hours
  • 50 ore - Maurizio Natali
Learning activities Caratterizzante
Area Discipline dell'ingegneria
Academic discipline ING-IND/22
Type of study-unit Obbligatorio (Required)
Language of instruction ENGLISH
Contents The course provides an introduction to the theory of composite materials covering the production processes, the mechanical and functional properties, and the criteria for choosing composite materials. In the first part of the course the most important structural and high char yield polymeric matrices will be introduced and then the theory of composites, in terms of micro mechanics, macro mechanics, lamination and thermal properties, will be covered.
Reference texts - P.K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC Press, [3 or 4 ed.].
- Ronald Gibson, Principles of Composite Material Mechanics, McGraw-Hill Science/Engineering/Math.
Other lecture notes or papers provided by the teacher.
Educational objectives The student will be guided to understand the fundamental concepts behind the theory of composite materials. At the end of the course the student will possess the basic tools at the base of the design of fiber reinforced composites
Prerequisites Basic knowledge of mathematics, physics, chemistry, structural mechanics, polymers.
Teaching methods The course will based on lectures and will make extensive use of Powerpoint presentations, theoretical exercises and laboratory experiences.
The course will be balanced in terms of theoretical and experimental concepts, providing a unique approach aimed at maximize the effectiveness of the teaching activity.
Learning verification modality Written exam + oral exam.
Extended program Introduction, matrices and fibers; micromechanics of composites (long and short fibers); macromechanics, mechanical and thermal properties of lamina; lamination theory, mechanical and thermal properties of laminate; production techniques, chemoreology and kinetic models of thermosets (mention); mechanical characterization techniques for composites. (tensile, compression, shear, flexural).
Condividi su