Insegnamento LABORATORIO DI ELETTROMAGNETISMO E OTTICA

Nome del corso di laurea Fisica
Codice insegnamento A001103
Curriculum Comune a tutti i curricula
Docente responsabile Michele Pauluzzi
Docenti
  • Michele Pauluzzi
  • Giovanni Carlotti (Codocenza)
Ore
  • 43 Ore - Michele Pauluzzi
  • 19 Ore (Codocenza) - Giovanni Carlotti
CFU 6
Regolamento Coorte 2019
Erogato Erogato nel 2020/21
Erogato altro regolamento
Attività Caratterizzante
Ambito Sperimentale e applicativo
Settore FIS/01
Anno 2
Periodo Secondo Semestre
Tipo insegnamento Obbligatorio (Required)
Tipo attività Attività formativa monodisciplinare
Lingua insegnamento Italiano
Contenuti ESPERIMENTI DI FISICA IN LABORATORIO PER UNA MIGLIORE COMPRENSIONE DELLA TEORIA; METODOLOGIE PER LA CONDUZIONE DI UN ESPERIMENTO, L' ANALISI DEI DATI E LA TRATTAZIONE DEGLI ERRORI. BREVI INTRODUZIONI TEORICHE AGLI ESPERIMENTI STESSI
Testi di riferimento P. Mazzoldi, M. Nigro, C. Voci: Fisica, Vol. II; EdiSES. J. A. Edminister: Circuiti Elettrici; Schaum J.R. Taylor: Introduzione all'analisi degli errori; Zanichelli, Bologna Young: Elaborazione statistica dei dati sperimentali; Veschi Editore
Obiettivi formativi Obiettivo del corso è l'effettuazione di esperimenti di laboratorio tesi ad ottenere:-una migliore comprensione degli argomenti teorici di fisica trattati-la metodologia di conduzione di un esperimento-l'approfondimento dell'analisi dei dati e della trattazione degli erroriLe principali abilità da acquisire saranno:-lo sviluppo di un metodo generale per affrontare una qualunque problematica sperimentale anche nuova-la capacità di affrontare in modo al tempo stesso rigoroso e flessibile la trattazione degli errori sperimentali-sapersi muovere correttamente in un laboratorio scientifico
Prerequisiti Al fine di comprendere e saper applicare la maggior parte delle tecniche descritte nell'insegnamento, è necessario aver sostenuto con successo l'esame di Laboratorio I.È inoltre utile aver frequentato i corsi di analisi matematica I e di fisica II, nonchè possibilmente aver superato con successo i relativi esami.
Metodi didattici lezioni frontali per introduzione generale al corso e preparazione ai singoli esperimentiesperimenti pratici di laboratorio. Gli studenti saranno divisi in gruppi di 2-4 persone. Effettueranno 6-8 esperimenti della durata di 4-5 ore ciascuno.
Altre informazioni
Modalità di verifica dell'apprendimento L'esame prevede una prova orale ed un'eventuale prova pratica.La prova orale consiste in un colloquio di circa 20-30 minuti, nel corso del quale vengono discusse le relazioni presentate sugli esperimenti eseguiti in gruppo in laboratorio nel corso dell'anno, compresi gli argomenti di fisica e di statistica necessari all'esecuzione degli esperimenti stessi, con particolare attenzione alla trattazione degli errori sperimentali.La prova è finalizzata alla valutazione della comprensione delle metodologie sperimentali e della capacità di applicare queste metodologie in situazioni sperimentali differenti.La prova pratica successiva è a discrezione del docente, nel caso ne ravvisi la necessità durante la discussione della parte orale. Lo studente deve affrontare singolarmente un esperimento pratico equivalente a quelli effettuati durante il corso e scrivere contestualmente una relazione sullo stesso. La durata della prova pratica è di circa 3-4 ore. Lo scopo della prova pratica è di verificare le capacità sperimentali dello studente, la sua conoscenza del metodo sperimentale e la capacità di applicarlo in una situazione nuova.

Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa
Programma esteso A) INTRODUZIONE
A1) Statistica
Ripasso della statistica. Trattazione e tipologia degli errori sperimentali. Trattazione di dati anomali. Applicazioni pratiche
A2) Metologia sperimentale. Schema di conduzione di un esperimento
B) ELETTROMAGNETISMO.
B1) Misure in CC Strumentazione per misure: voltmetro, amperometro, ohmetro, multimetri; funzionamento, utilizzo, idealità. Misurazione di resistenze: ohmetro, metodo volt-amperometrico, ponte di Wheatstone.
Verifica dei principi di Kirchoff, verifica del teorema di Thevenin.
B2) Oscilloscopio.
Funzionamento ed utilizzo dell'oscilloscopio. Misure in CC e in AC. Componente continua di un segnale. Confronto con altri strumenti di misura.
B3) Diodo.
Teoria del diodo. Curva caratteristica del diodo. Circuiti con diodi.
B4) Misure in CA.
Elementi circuitali. Impedenza - Metodo dei vettori rotanti. Misure in CA. Misura della capacità di un condensatore. Circuiti con condensatori (filtri etc).
C) OTTICA
Richiamo di ottica fisica, riflessione, rifrazione, dispersione, interferenza e diffrazione. Vari tipi di spettrometri basati su prisma, reticolo di diffrazione, interferometro di Michelson. Potere risolutivo e misura di doppietti di righe di emissione. Cenni all'ottica nei mezzi anisotropi. Polarizzatori a cristallo e lamine di ritardo. Introduzione alle sorgenti ottiche (lampade a filamento ed a scarica, LED, Laser) ed ai rivelatori ottici (fotomoltiplicatori, fotodiodi e fotoconduttori).

Il corso prevede alcune tra le seguenti misure:
- Misure di grandezze elettriche: utilizzo di strumenti di misura (voltmetri, amperometri, ohmetri, oscilloscopi...)
- misure di grandezze elettriche in CC;
- misura di resistenze con metodo voltamperometrico e/o con ponte di Wheatstone;
- verifica delle leggi di Kirchoff; - verifica del teorema di Thevenin;
- misure di grandezze elettriche in AC;
- studio di circuiti RC o RL o RCL: studio della risposta in frequenza (attenuazioni, sfasamenti, risonanza, banda passante....);
- studio della curva caratteristica di un diodo al silicio ed applicazioni.
- Misure di ottica, relative a riflessione e rifrazione, dispersione, interferenza e diffrazione.
Condividi su