Unit NANOMAGNETISM AND SPINTRONICS

Course
Physics
Study-unit Code
GP005936
Curriculum
Fisica della materia
Teacher
Gianluca Gubbiotti
Teachers
  • Gianluca Gubbiotti
Hours
  • 47 ore - Gianluca Gubbiotti
CFU
6
Course Regulation
Coorte 2020
Offered
2020/21
Learning activities
Affine/integrativa
Area
Attività formative affini o integrative
Academic discipline
FIS/03
Type of study-unit
Opzionale (Optional)
Type of learning activities
Attività formativa monodisciplinare
Language of instruction
Italian, but with references and textbooks in english.
Contents
Physics of magnetism and magnetic materials, of nanometric systems. Spin waves Basics of spintronics, magnonic crystals and magnonics. Applications to ICT devices.
Reference texts
Notes delivered by the teacher, integrated by selected parts of the following textbooks:
Ibach-Luth, SOlid State Physics (Springer);
N. Spaldin, Magnetic Materials (Cambridge);
J. Stohr-H.C. Siegman, Magnetism (Springer);
D. Stancel - A. Prabhakar, Spin Waves (Springer);
A.G. Gurevich-G.A. Melkov,
Magnetization Oscillations
and Waves (CRC Press);
Educational objectives
Comprehension of the physics of magnetic materials, with emphasis given to nanometric systems. Knowledge of the main experimental techniques and ability to perform micromagnetic simulations. Application to ICT devices.
Prerequisites
To achieve a satisfactory comprehension of the arguments of this course, it is necessary to know the basic elements of electromagnetism, condensed matter physics and quantum mechanics that are usually included in the background of the three-year Laurea degree in Physics.
Teaching methods
The course will mainly consist of face-to-face lessons. However, multimedia materials will be also shown and micromagnetic simulations will be performed to realize virtual experiments. Moreover, there will virtual experimetns on micromagnetic simulation of both static and dynmic properties.
Other information
During the couse, students will perform micromagnetic simulations to reproduce both the static and dynamic properties of magnetic nanostructures including: nano-objects, thin films and magnonic crystals.
Learning verification modality
Ora exam after the end of the course, whose duration will be about one hour. In the first part, the student will present a topic at his/her choice, with reference to his readings of specialised literature. In the second part, the teacher will propose several questions to verify the preparation of the student about the program covered during the course.
Extended program
1) Introduction to the course. Basic definitions and outlook on applications. Relevant length- and time-scales. Survey about applications and theoretical approaches. Measurement systems. Recall about atomic magnetism and spin-orbit interaction. L-S and J-J coupling. Hund’s rules.
2) Classical theory of Diamagnetism and Paramagnetsim. Quantomechanical corrections. Pauli paramagnetsm and Pauli diamagnetism of free electrons. Ferromagnetic behaviour: classical theory of Weiss, molecular field and magnetic domains.
3) Exchange interaction and its quanto-mechanical origin. Helium atom. Ferromagnetism. Heisemberg hamiltonian. Temperature dependence of the magnetization. Exchange interaction between free electrons . Band model of ferromagnetism. Stoner criterion. Spin waves in the exchange regime.

4) Quantum theory of electrical conductin, electron motion and transport phenomena. Boltzmann equation and relaxation time. Two-currents model. Spin-dependent. Spin-dependent scattering and spin accumulation. Interlayer exchange coupling and giant magneto resistance. Tunnel magnetoresistance and its applications. Spin valve and magnetic memories. Spin-Hall effect. Spintronic devices.

5) Magnetic interactions. Magnetic anisotropy and Domains. Micromagnetism.

6) Spin waves: classical approach. Dynamic susceptibility and ferromagnetic resonance. Magnetic modes in anisotropic ferromagnets. Magnetostatic approximation. Dipoa,lr and exchange- dominated spin waves. Spin waves in thin film and multilayers. Spin wave in confined systems.

7) Magnonic crystals. Spin wave steering and manipulation. Waveguides. Spin wave excitaiton by inductive methods.
Spin-wave nano-optics. Spin-wave reflection and refraction (Snell's law).
Magnonics
Condividi su