Unit GEOMETRY
- Course
- Civil and environmental engineering
- Study-unit Code
- GP004388
- Curriculum
- In all curricula
- Teacher
- Luciano Stramaccia
- Teachers
-
- Luciano Stramaccia
- Hours
- 48 ore - Luciano Stramaccia
- CFU
- 6
- Course Regulation
- Coorte 2021
- Offered
- 2021/22
- Learning activities
- Base
- Area
- Matematica, informatica e statistica
- Academic discipline
- MAT/03
- Type of study-unit
- Obbligatorio (Required)
- Type of learning activities
- Attività formativa monodisciplinare
- Language of instruction
- Italian
- Contents
- Concetti fondamentali dell'Algebra Lineare.
Geometria cartesiana del piano e dello spazio. - Reference texts
- ALGEBRA LINEARE E GEOMETRIA
di A. BASILE -L. STRAMACCIA
ed. COM srl - Educational objectives
- Concetti fondamentali sugli spazi vettoriali, applicazioni lineari, matrici, sistemi lineari. Loro applicazione allo studio della geometria cartesiana del piano e dello spazio. Curve e superficie algebriche di ordine due.
- Prerequisites
- Teoria degli insiemi. Applicazioni. Relazioni di equivalenza e partizioni. Operazioni binarie. Numeri complessi. Polinomi, divisione, radici e riducibilità.
- Teaching methods
- Tradizionali in aula
- Other information
- nessuna
- Learning verification modality
- L'esame di Geometria si compone di una prova scritta ed una prova orale. Il voto finale é ottenuto mediando tra i voti delle due prove.
Non é consentita la consultazione di libri ed appunti durante lo svolgimento della prova scritta.
Nella prova scritta si considera sufficiente una votazione maggiore o uguale a 15/30. Chi ottiene una votazione minore o uguale a 14/30 è di norma sconsigliato dal sostenere la prova orale.
Nel rispetto delle regole vigenti, non si pongono restrizioni agli studenti rispetto alla possibilità di sostenere l'esame più volte nella stessa sessione. - Extended program
- Richiami di teoria degli insiemi:applicazioni, composizione. Applicazioni iniettive, suriettive e biiettive. Invertibilità. Relazioni e Partizioni. Operazioni. Strutture algebriche. Il campo $Z_p$. Il campo dei numeri complessi $\mathbb C$. Spazi vettoriali. Lo spazio $K^n$. Spazi vettoriali di funzioni. Sistemi di generatori. Dipendenza lineare. Basi e coordinate di un vettore. Base canonica di $K^n$. Basi in sistemi di generatori. Teorema dello scambio e dimensione. Applicazioni lineari. Spazi vettoriali n-dimensionali e isomorfismo con . Lo spazio Hom(V,W). Applicazioni lineari definite sui vettori di una base. Nucleo e immagine di una applicazione lineare. Relazione sulle loro dimensioni. Spazi vettoriali isomorfi e loro dimensione. Spazi vettoriali di matrici. Prodotto righe-colonne. Matrice di una applicazione lineare. Matrice di una applicazione lineare composta. Matrice di un cambiamento di base. Calcolo del determinante di una matrice. Determinante della trasposta e determinante di un prodotto(*). Invertibilità di una matrice, suo determinante, dipendenza lineare delle colonne. Sistemi di Cramer. Rango di una matrice. Minori di una matrice e determinazione del rango. Sistemi lineari omogenei e spazio delle soluzioni. Sistemi lineari non omogenei e teorema di Rouchè-Capelli. Sistema omogeneo associato. Rette e segmenti orientati. Riferimenti affini e cartesiani. Lo spazio $V(\Sigma)$ dei vettori geometrici. Dimensione di $V(\Sigma)$ e isomorfismo con $R^3$. Coordinate di un vettore e degli estremi dei suoi rappresentanti. Parallelismo e complanarità fra vettori e condizioni sulle loro coordinate. Condizioni di allineamento e complanarità fra punti. Rappresentazione parametrica di rette e piani. Equazione cartesiana di un piano e parametri di giacitura. Fasci di piani e di rette. Equazioni cartesiane di una retta e parametri direttori. Condizioni di parallelismo. Cambiamenti di riferimento affine. Definizioni di angoli e di modulo di un vettore. Prodotto scalare. Distanza di due punti, sfera. Versore di una retta orientata e coseni direttori. Calcolo di angoli. Prodotto vettoriale. Ampliamento proiettivo dello spazio affine. Coordinate omogenee. Rappresentazione di rette e piani in coordinate omogenee. Complessificazione del piano reale. Rette isotrope e punti ciclici. Curve algebriche, loro ordine, riducibilità e componenti. Teorema di Bezout. Punti semplici e singolari. Condizioni analitiche per la singolarità. Classificazione delle coniche. Conica per cinque punti. Fasci di coniche. Configurazione dei punti base e delle coniche degeneri di un fascio.