Unit MOLECULAR BIOLOGY

Course
Chemistry and technology of drugs
Study-unit Code
65002506
Location
PERUGIA
Curriculum
In all curricula
Teacher
Mariangela Morlando
Teachers
  • Mariangela Morlando
Hours
  • 48 ore - Mariangela Morlando
CFU
6
Course Regulation
Coorte 2018
Offered
2019/20
Learning activities
Caratterizzante
Area
Discipline biologiche e farmacologiche
Academic discipline
BIO/11
Type of study-unit
Obbligatorio (Required)
Type of learning activities
Attività formativa monodisciplinare
Language of instruction
Italian
Contents
Biological macromolecules: DNA, RNA and proteins. Nucleic acids: expression and use of the information contained therein. The non coding RNAs. The study of diseases at molecular level. Methods for the study of gene expression. Recombinant DNA technology and its use in biomedicine
Reference texts
Biologia Molecolare Amaldi, Benedetti, Pesole, Plevani - tird edition 2018
Biologia molecolare del gene Watson, Baker, Bell, Gann, Levine, Losick - 2015
Biologia molecolare - Zlatanova, van Holde - 2018
For a deepen study of methodologies:
Biotecnologie Molecolari Brown - second edition 2017

Teaching material provided by the Professor.
Educational objectives
The course aims to provide the basic knowledge of the structural organization of the genes and of molecular mechanisms regulating transcription and post-transcriptional processes both in physiological and pathological conditions. Moreover, the course offers basic knowledge of experimental methodologies used in molecular biology highlighting the aspects related to the genetic engineering and the biotechnologies.
Prerequisites
Basic knowledge of Biochemistry and Biology
Teaching methods
Lectures will be made by using slides and movies.
Other information
Attività didattica integrativa:
Upon request, a tutorial activity during the course will be provided in order to support the preparation of the final exam. Professor’s office hours are available on the personal web site; it is possible to arrange an appointment via email.
Learning verification modality
It consists of an oral exam aimed to assess the knowledge acquired and the ability to understand the topics of the course; also the communication skills and the use of proper scientific language will be assessed.
During the course the students have the possibility to perform two written tests made of both multiple-choice and open questions. These tests offer to each student the opportunity to challenge the level of its own knowledge about the topics of the course and to focus the study on specific critical issues. For the students passing the written tests, the final score will consider both written and oral exams
Extended program
- History of Molecular Biology: key experiments that allowed to establish that the DNA is the macromolecule carrying the genetic information. Structure of nucleic acid and proteins. The central dogma of molecular Biology. Prokaryotic and Eukaryotic cells.
- The double helix structure of DNA (A, B, Z). DNA melting and annealing. Iperchromic effect. Chromosomes: chromatin, nucleosomes, histones, genome organization. Definition of gene. Prokaryotic and Eukaryotic genomes.
- Meiosis and Mitosis. DNA replication, cell cycle and its control. Telomeres-senescence, aging and cancer.
- Mutations of DNA, Mechanisms of DNA repair, cellular response and cancer therapies
- RNA structure and function: coding and non coding RNAs
- Transcription in Prokaryotic and Eukaryotic cells. Machineries and mechanisms of transcription: initiation, elongation and termination. Transcription factors, enhancers, co-activators and co-repressors.
- Basic mechanism of regulation of transcription in prokaryotes: Lactose and Tryptophan operons.
- Regulation of transcription in eukaryotes. Histone modifications and chromatin remodelling. Euchromatin e heterochromatin.
- Post-transcriptional processes: mRNA splicing and alternative splicing; mRNA capping and polyadenylation. Pathologies linked to defective splicing process and potential therapeutic approaches. Histone mRNA maturation.
- Genetic code and mechanisms of translation in prokaryotes and eukaryotes. Amminoacil-tRNA synthetase. Translation regulation. Mode of action of antibiotics.
- Post-transcriptional regulation of gene expression in eukaryotes: regulation of RNA stability and NMD; Iron metabolism: Post-transcriptional regulation of Ferritin e la Transferrin genes; regulatory non coding RNAs: microRNAs (biogenesis and function) and long non coding RNAs. Pathologies linked to altered regulation of gene expression at post-transcriptional level. RNA molecules as therapeutic agents and targets.
Molecular Biology techniques
- Electrophoresis of nucleic acids and proteins
- Study of gene expression: Northern blot and Western Blot. Methods for DNA labelling (radioactive and non radioactive). RT-PCR.
- Recombinant DNA technology and molecular cloning: PCR, restriction enzymes, vectors fr cloning, ligase. Bacteria transformation. Applications.
- Fusion proteins
- Study of the DNA/RNA-protein interaction (EMSA)- Study of protein-protein interaction.
- Proteins and chromatin Immunoprecipitation (IP, ChIP), Pull down of RNAs (ChIRP)
- Cell cultures and model systems
Condividi su