Unit MACHINES AND ENERGY SYSTEMS

Course
Mechanical engineering
Study-unit Code
70A00109
Curriculum
Gestionale
Teacher
Francesco Di Maria
Teachers
  • Francesco Di Maria
Hours
  • 81 ore - Francesco Di Maria
CFU
9
Course Regulation
Coorte 2021
Offered
2022/23
Learning activities
Caratterizzante
Area
Ingegneria energetica
Academic discipline
ING-IND/08
Type of study-unit
Obbligatorio (Required)
Type of learning activities
Attività formativa monodisciplinare
Language of instruction
Italian
Contents
Turbomachines
Energy Systems:
External combustion plants
Gas turbine engine plants .
Gas-steam combined cycles
Electrical and thermal cogeneration system
Hydroelectric plants .
Reference texts
TESTI CONSIGLIATI:
1. G. BIDINI, Macchine 1 Turbomacchine, Ed. Anteo, Perugia, 2010
2. G. BIDINI, Macchine 2 Macchine volumetriche, Ed. Anteo, Perugia, 2009.
3. G. BIDINI, Macchine 3 Sistemi energetici, Ed. Anteo, Perugia, 2011
4. G. BIDINI. Esercizi di impianti di conversione dell’energia, Ed Margiacchi-Galeno, Perugia, 2004
Educational objectives
Teaching is the first course systems and components of energy systems

The main goal of education is to provide students with the foundation for the design analysis and verification of operation of components and energy systems

The main knowledge acquired will be:

Reciprocating internal combustion engines: two and four stroke engines. Ideal cycle and limit cycle for spark ignition or spontaneous. Real cycle. Diagram of the indicator.
External combustion plants: Plants steam turbine engines. Simple cycles and improved. Regeneration. Parts of steam systems: condensers, degassing, regenerative heat exchangers. Steam generators: construction types, heat energy losses in steam generators. ORC

Gas turbine power plants. Simple cycle (Joule) ideal and real. Cycle regenerated. Cycles with compression intercooled and / or after combustion. Ericsson cycle. The steam injection in gas turbines. Aircraft engines

Combined cycle gas-steam recovery solutions and post-combustion. Recovery boilers and with post-combustion. Recovery boilers single and dual pressure level. Optimization of the coupling between gas cycle and steam cycle.

Cogeneration of electricity and heat. Applications to different power plants: turbines pressure steam or bleed, gas turbines, internal combustion engines, alternative
Hydroelectric plants: Plant-river. Plants in the basin. Pumping systems. Wave power

The main skills (ie the ability to apply the knowledge acquired) will be:
analyze a cycle compression ignition engine or ignition
sizing and verify the principal parameters of a plant with a steam turbine in different operating conditions
analyze the functioning of the most common cogeneration systems
dimensioning and check the models of production systems of hydroelectric energy
Prerequisites
In order to understand and know how to apply most of the techniques described in teaching need to have successfully supported the examination of Technical Physics.
In addition, other topics covered in the module requires to have the ability to solve simple mass balance and energy and the ability to solve simple integrals and derivatives.
Teaching methods
The course is organized as follows
Lectures on all the topics of the course
Lessons in laboratories machines (cogeneration, biomass, fuel cells, internal combustion engines, alternative). Students will be divided into groups (maximum 20 students per group) and will follow four specific lessons of 1.5 hours each
Other information
NA
Learning verification modality
The exam includes an oral and / or written test. The oral exam in a discussion lasting about 30 minutes aimed at ascertaining the level of knowledge and the understanding reached by the student on the theoretical and methodological implications listed in the program (internal combustion engines, turbo machinery, energy systems). The oral exam will also test the ability of communication with the student of language and autonomous organization of the exposure on the same topics in theoretical content. The written Consite in the solution of two / three problems in computational nature and / or size of the plant and / or multiple-choice questions and / or open technical content and methodology of the program. The test has a duration of not more than 3 hours and is designed to test the ability to correctly apply the theoretical knowledge, the understanding of the issues proposed and the ability to communicate in a written
The test may also include, in addition to the high proof, nice discussion of a case study proposed by the teacher as a laboratory to one or more tests, carried out as a project carried out individually or in groups. In the discussion will explain the issues raised in the case assigned, the alternatives to the project, any regulatory environment, the methodology adopted, the analysis of the results obtained. The discussion can take advantage of a written report or about 10 slides and predict the demand for theoretical study and clarification of detail by members of the examination committee.
The evidence as a whole allows us to ensure both the ability of knowledge and understanding, and the ability to apply the acquired skills and the ability to display, and the ability di apprendere and process solutions for independent judgment
Extended program
Turbomachines
Turbomachines. Fluido-dynamic basic equations. turbines regulation. Gas turbines. Notes on hydraulic turbines. Axial and centrifugal compressors. Hydraulic machines (pumps). Pumps cavitation.
Teaching units: Energy Systems
Teaching Subunit: External combustion plants
Steam turbine engine plants. Simple cycles and improved. Regeneration. Steam plants components: condensers, degasser, regenerative heat exchangers. Steam generators: constructive solutions, heat exchange. Energy losses in steam generators. ORC.

Teaching Subunit: Gas turbine engine plants .
Gas turbine engine plants. Simple cycle (Joule) ideal and real. Regenerative cycle. Cycles with intercooled compression and/or post-combustion. Ericsson cycle. Steam injection in gas turbines. Aeronautical engines.

Teaching Subunit: Gas-steam combined cycles
Gas-steam combined cycle: post-combustion and recovery solutions. Recovery and post-combustion boilers. Single and double pressure level recovery boilers. Optimization of the connection between gas cycle and steam cycle.

Teaching Subunit: Electrical and thermal cogeneration system
Electrical and thermal cogeneration system. Applications to different engine plants: backpressure steam turbine or pressure controlled extraction turbines, gas turbines, reciprocating internal combustion engines.

Teaching Subunit: Hydroelectric plants .
Run of the river hydroelectric plants. Hydroelectric dam. Pumped-storage plants. Tidal power station.
Condividi su