Unit SENSORS AND MICROSYSTEMS IN A CLOUD COMPUTING ENVIRONMENT
- Course
- Electronic engineering for the internet-of-things
- Study-unit Code
- 70A00102
- Curriculum
- In all curricula
- Teacher
- Daniele Passeri
- Teachers
-
- Daniele Passeri
- Luca Roselli (Codocenza)
- Hours
- 24 ore - Daniele Passeri
- 24 ore (Codocenza) - Luca Roselli
- CFU
- 6
- Course Regulation
- Coorte 2021
- Offered
- 2022/23
- Learning activities
- Caratterizzante
- Area
- Ingegneria elettronica
- Academic discipline
- ING-INF/01
- Type of study-unit
- Type of learning activities
- Attività formativa monodisciplinare
- Language of instruction
- Italian
- Contents
- Introduction on sensors. Thermal sensors and tandem sensors based on thermal sensors, mechanical sensors, magnetic sensors, radiation detectors and examples of microsystems.
- Reference texts
- Lecture notes prepared by the educator.
Meijer ed.-Smart Sensor Systems, John Wiley and Sons, 2008.
J.W. Gardner, Microsensors - Principles and Applications, Wiley (1994 e seguenti). ISBN 0-471-94135-2.
S.M. Sze, Semiconductor Sensors, Wiley 1994. - Educational objectives
- Methodological knowledge: basic knowledge of the theoretical operating principles of the most common types of sensors and detectors and of Micro-Electro-Mechanical Systems (MEMS).
Professional skills: understanding of the data sheet of common types of sensors and detectors available on the market. - Prerequisites
- The course does not require the student to pass compulsory propaedeutic exams. It exploits different physical concepts but they are introduced from the basic principles: heat flux and transmission in solids and fluids, electromagnetic radiation, Clausius-Clapeyron equation, material elestic theory, piezoresistivity, magnetic properties of materials (optional contents: piezoelectricity). Moreover, basic concepts and basic equations of semiconductor physics are thoroughly used.
- Teaching methods
- The course is organized as follows:
- face to face lectures on all issues of the course. - Other information
- No further info.
- Learning verification modality
- The exam is based on an individual oral examination (approx. 30 minutes), on all the theoretical issues described during face to face lectures. In this frame, methodological aspects assume overall importance.
- Extended program
- Introduction
¿ Sensor Definition
¿ IoT Definition
¿ IoT Product and Applications Examples
¿ Few Dates
¿ Standardizations, Regulations
¿ Datasheets (Temperature Sensor m35- Accelerometers ADX317)
Sensor Parameters
¿ Range - Full Scale Output (FSO)
¿ Output Format – Resolution
¿ Transfer Function
¿ Linearity
¿ Sensitivity
¿ Hysteresis
¿ Resolution
¿ Accuracy
¿ Precision
¿ Repeatability & Reproducibility-note
¿ Error
¿ Dynamic Characteristic
¿ Example “Acoustic Sensor Modeling” (“Design and Modeling of a ZnO-Based MEMS Acoustic Sensor for Aeroacoustic and Audio Applications”
Sensors Classification and Structure
¿ Sensor classification
¿ Sensor vs transducer definition
¿ Sensor structure
Thermal Sensors
¿ Temperature Dependent Resistors overview
¿ Relation between Resistivity and Temperature-Temperature Coefficient of Resistance
¿ Resistance Temperature Detectors (RTD)
o Callendar – Van Dusen Equation-I-Material Dependency of Callendar Van Dusen Equation-Materials for RTDs- PT100 (385)- RTD Fabrication Measurements with RTD:2 Wires-3 Wires and 4-wires Measurements- Comparison of Different RTDs (PT100-PT1000-Nickel RTD)
o Example: MAX 31865
¿ Basic Principle and Definitions
o Heat Transfer: Conduction , Radiation , Convection
o Newton’s Law of Cooling : Thermal Resistance and Thermal
o Resistivity
o Thermal Conductance and Thermal Conductivity (Fourier Equation)
o Domain analogies and Nomenclature
o Thermal Dissipation, Particular case of Joule heating
o Heat capacity
o Complete Equivalent Thermal Equation And Circuit
o Thermal Resistance in datasheets RTDs
¿ Thermistor
o NTC and PTC Thermistors: definition,
o NTC Thermistor: materials, Transfer Function Approximations (First Order-beta Formula- Steinhart Hart Equation, How to choose the right approximations), Main Characteristics and Performances- NTC&RTDs Comparison Types of NTC-Thermistors (Beaqd Thermistors- Disk and Chip Thermistor- Glass Encapsulated Thermsitors)
o PTC Thermistor: materials, Transfer Function (Silistor & Switching Type)- Modes of Operations (self-heated Mode, Sensing Sero-power Mode)
¿ Thermocouple
o Principles of Operation- Type K Thermocouple example
o Themroelectricity and Seebeck Effect (Seebeck Coefficient Consideration)
o How to Measure absolute temperature with Thermocouples
o Analysis of Type J thermocouple
o Application: Semiconductor Thermocouple TEG (thermoelectric Generator- Example: Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)
o Application: Thermoelectric Cooler (TEG)
¿ ICs Thermal Sensors
o Transistor and Diodes as PTAT (Proportional To Absolute Temperature): Diode- Current vs T, BJT- direct vs. saturation region- ADS test resumé
¿ Applications
o Flow Sensor, Hot wire Anemometer: constant current and constant temperature measurements. Hot wire with NTC and PTC Thermistor
o Vacuum Pressure sensors, Thermocouple Gauge, Pirani Gauge
o Example: “A wafer-level Packaged CMOS MEMS Pirani Vacuum Gauge”
o Relative Humidity Sensor- Condensation Principle Hygrometer-Example : Humidity Sensor SHTW2, Silicon Labs Si7021-A20
o IR Sensor- Advantages of NON-Contact measurements -Physical Principles of Black Body Radiations (from Reyleight -Jeans equation to Planck Equation), Stefan-Boltzman Law, Wien’s Law. Basic Structure of IR Temperature Sensor. Thermal IR Detector (Thermocouple/ Pyrometer, Phyroelectrical Detector, Bolometer)
¿ Radiation Sensors
o Radiation: the electromagnetic spectrum.
o Detection of visible radiation: optical absorption; absorption coefficient; generation rate; quantum efficiency; recombination.
o Collection of charge: drift, diffusion.
o Detection devices: Photodiodes: PPS (Passive Pixel Sensors); CMOS APS (active pixel sensors); Pinned photodiode; WIPS (Weak Inversion Pixel sensors).
¿ Magnetic Sensors
o Electric and Magnetic Polarization, Material Magnetics Properties,
o Magnetic Transducers /Reed Switch, Coils, Galvanometric Effects and Sensors.
o Hall Elements, Magnetoresistive Element, Anisotropic Magnetoresistance (AMR), Giant Magnetoresistance (GMR) , Spin Valve, TMR (Tunneling Magneto Resistance), Spintronics.
o Mechanical Sensor: Piezoelectricity, examples