Unit SEISMIC AND GEOTECHNICAL RISK

Course
Safety engineering for the territory and the built environment
Study-unit Code
A002267
Curriculum
In all curricula
Teacher
Manuela Cecconi
CFU
11
Course Regulation
Coorte 2022
Offered
2022/23
Type of study-unit
Obbligatorio (Required)
Type of learning activities
Attività formativa integrata

GEOTECHNICAL SAFETY

Code A002269
CFU 5
Teacher Manuela Cecconi
Teachers
  • Manuela Cecconi
Hours
  • 32 ore - Manuela Cecconi
Learning activities Caratterizzante
Area Ingegneria della sicurezza e protezione civile, ambientale e del territorio
Academic discipline ICAR/07
Type of study-unit Obbligatorio (Required)
Language of instruction Italian
Contents Introduction to Soil Mechanics and basic concepts of Rock Mechanics.
Principles of Earthquake Geotechnical Engineering
Design criteria and stability verifications aimed at the safety of
geotechnical works/systems in both static and seismic conditions.
Reference texts 1. Lectures notes.
2. Geotecnica di R. Lancellotta, edito da Zanichelli.
3. Meccanica delle Rocce_Teoria e Applicazioni nell'Ingegneria_a cura di
Rotonda T. et al (Hevelius Edizioni_Edizioni Efesto)
4. "Geotechnical Earthquake Engineering" di Kramer, 1996, Prentice Hall.
5. Specialised scientific papers.
6. Technical codes (NTC2018)
Educational objectives The purpouse of this course is to introduce the Student to the concepts,
theories and procedures of Geotechnical Engineering (both rock masses and soil deposits) finalized to the
safety and protection of geotechnical systems in static and seismic
conditions.
Prerequisites In order to fully understand the topics of this Course, Students have to
know the basic concepts of Geotechnics, dealt with during the basic
courses of a 3-years Degree in Civil Engineering.
Teaching methods E-learning activities + Face to face (4 hours per week) in class.
Presentation of case studies and numerical examples in class.
Possible field trips.
The teaching material is available on https://www.unistudium.unipg.it/
Other information Attending the lessons is optional but strongly suggested.
Learning verification modality Oral exam.
The exam will take not more than 45 min. The exam is aimed at
verifying: a) the level of knowledge; b) the ability of the Student to
discuss possible design solutions aimed at verifying the safety of
geotechnical works and systems in seismic areas.
Extended program References of Soil Mechanics and basic concepts of Rock Mechanics.
Dynamic soil properties from in situ investigations and laboratory testing. Seismic actions.
Design criteria and stability verifications for excavation cuts, natural rock/soil slopes and other geotechnical works/systems.
Pseudostatic and Newmark-type pseudodynamic approaches.
Numerical examples and case hystories.

Code A002268
CFU 6
Teacher Francesco Ponziani
Teachers
  • Francesco Ponziani
Hours
  • 36 ore - Francesco Ponziani
Learning activities Caratterizzante
Area Ingegneria della sicurezza e protezione civile, ambientale e del territorio
Academic discipline GEO/11
Type of study-unit Obbligatorio (Required)
Language of instruction Italian
Contents The program includes:
historical development of seismology; propagation of seismic waves,
interpretation of seismograms and localizations; earthquake sources,
magnitude and size; statistical laws, geodesy; seismotectonics;
seismometry; seismic risk and civil protection systems; seismic
microzonation; seismic prospecting.
Reference texts Stein, S., Wysession, M. (2003). An Introduction to Seismology,
Earthquakes, and Earth Structure, Blackwell Publishing.
Shearer, P. M. (2011). Introduction to Seismology, 2nd edition.
Cambridge.
Lay, T., Wallace, T.C. (1995). Modern Global Seismology. Academic Press.
Treatise of Geophysics, 2nd edition (2015). Elsevier.
Metodi didattici materiale audiovisivo e lezioni preregistrate;
lezioni frontali;
esercitazioni - sopralluoghi.
Modalità di verifica
dell'apprendimento
L'esame prevede una prova orale, che consiste in un colloquio della
durata di circa 45 minuti sugli argomenti trattati durante il corso e
approfonditi nei testi consigliati.La prova è finalizzata ad accertare il
livello di conoscenza e comprensione degli argomenti trattati nel corso, la
capacità di trovare soluzioni a problemi specifici in materia di riduzione
del rischio sismico e la proprietà di linguaggio ed esposizione.
Programma esteso Sviluppo storico della sismologia: descrizione delle principali
problematiche.
Onde elastiche : equazione delle onde, onde di volume, onde di
superficie, principi di Huygens e Fermat , legge di Snell ; equazioni di
Zoeppritz-Knott, riduzione dell'ampiezza sismica con la propagazione,
diffrazione.
Interpretazione dei sismogrammi: soluzione del problema inverso.
Localizzazione ipocentrale: singola stazione, multiple stazioni,
localizzazioni relative. Determinazione della struttura interna della Terra.
Sorgente dei terremoti : Faglie, rimbalzo elastico, ciclo sismico,
meccanismi focali, tensore momento, stress drop.
Dimensione dei terremoti: definizione di magnitudo, magnitudo di eventi
locali, magnitudo di eventi distanti, saturazione della magnitudo,
magnitudo momento, energia, intensità.
Terremoti e statistica : legge di Gutenberg Richter, legge di Omori, legge
di Bath.
Terremoti e geodesia: misurare le deformazioni del suolo tramite GPS e
SAR, deformazioni cosismiche e intersismiche.
Sismotettonica: struttura e dinamica della litosfera; sismotettonica in
Italia. Previsione dei terremoti e trasferimento dello stress: ciclo dei
terremoti, precursori, stress statico, stress dinamico.
Sismometria: principi generali, funzionamento dei sismografi, tipologie di
acquisitori e sensori. Reti sismiche ed accelerometriche: specifiche e
campi di applicazione. La Rete Sismica Nazionale dell’INGV e la Rete
Accelerometrica Nazionale del DPCN. Esempi applicativi.
Rischio sismico: Definizione del rischio sismico. Sismicità in Italia,
sviluppo della classificazione sismica. Pericolosità, vulnerabilità e rischio
sismico. Cenni di multirischio, piani di protezione civile. La protezione
civile in Italia.
Microzonazione sismica: concetti, metodologie e strumenti. Aspetti
normativi. Condizione Limite di Esistenza.
Prospezioni sismiche : applicazioni di interesse ingegneristico.
Metodologie di superficie ed in foro in fase P ed S, tomografia sismica,
monitoraggi vibrometrici: strumentazione. Tecniche di rapporti spettrali
finalizzate alla microzonazione sismica.
Kramer, A.L. (1996). Geotechnical Earthquake Engineering. Prentice Hall
College.
New Manual of Seismological Observatory Practice (NMSOP-2).
http://bib.telegrafenberg.de/publizieren/vertrieb/nmsop/
Nori, L., Di Marcantonio, P. Manuale pratico di risposta sismica locale. Dal
sismogramma allo spettro di progetto conRexel e Strata. EPC editore.
Educational objectives - theoretical bases on earthquake physics and on useful parameters to
describe seismic events;
- theoretical bases on seismic risk and on techniques for assessing and
reducing seismic risk.
The main skills will be:
- ability to critically view seismic processes and their hazard;
- integrated vision of seismic risk and practical applications on risk
reduction;
- exhibition synthesis capacity and the use of appropriate technical scientific language.
Prerequisites The knowledge of the basic notions of mathematics and physics is required.
Teaching methods Audiovisual material and pre-recorded lessons;
frontal lessons;
exercises - inspections
Learning verification modality The exam includes an oral test, which consists of an interview lasting
about 45 minutes on the topics covered during the course and deepened
in the recommended texts. The test is aimed at ascertaining the level of
knowledge and understanding of the topics covered in the course, the
ability to find solutions to specific problems regarding seismic risk
reduction and the property of language and exposure.
Extended program Historical development of seismology: description of the main problems.
Elastic waves: wave equation, body waves, surface waves, Huygens and
Fermat principles, Snell's law; Zoeppritz-Knott equations, reduction of
seismic amplitude with propagation, diffraction.
Interpretation of seismograms: solution of the inverse problem.
Hypocentral location: single station, multiple stations, relative locations.
Determination of the internal structure of the Earth.
Earthquake source: Faults, elastic rebound, seismic cycle, focal
mechanisms, moment tensor, stress drop.
Earthquake size: definition of magnitude, magnitude of local events,
magnitude of distant events, saturation of magnitude, moment
magnitude, energy, intensity.
Earthquakes and statistics: Gutenberg Richter's law, Omori's law, Bath's
law.
Earthquakes and geodesy: measure soil deformations by GPS and SAR,
cosismic and intersismic deformations.
Seismotectonics: structure and dynamics of the lithosphere;
seismotectonics in Italy. Earthquake prediction and stress transfer:
earthquake cycle, precursors, static stress, dynamic stress.
Seismometry: general principles, operation of seismographs, types of
acquisitors and sensors. Seismic and accelerometric networks:
specifications and fields of application. The National Seismic Network of
the INGV and the National Accelerometric Network of the DPCN.
Application examples.
Seismic risk: Definition of seismic risk. Seismicity in Italy, development of
seismic classification. Hazard, vulnerability and seismic risk. Elements of
multirisk, civil protection plans. Civil protection in Italy.
Seismic microzonation: concepts, methodologies and tools. Regulatory
aspects. Limit Condition of Existence.
Seismic prospecting: applications of engineering interest. Surface and
borehole methodologies in P and S phase, seismic tomography,
vibrometric monitoring: instrumentation. Spectral relationship techniques
aimed at theseismic microzonation
Condividi su