Unit PROBABILITY THEORY

Course
Computer science and electronic engineering
Study-unit Code
70A00056
Curriculum
In all curricula
Teacher
Paolo Carbone
Teachers
  • Paolo Carbone
Hours
  • 54 ore - Paolo Carbone
CFU
6
Course Regulation
Coorte 2023
Offered
2024/25
Learning activities
Caratterizzante
Area
Ingegneria elettronica
Academic discipline
ING-INF/07
Type of study-unit
Obbligatorio (Required)
Type of learning activities
Attività formativa monodisciplinare
Language of instruction
Italian
Contents
Introduction to probability theory: continuous, discrete and mixed random variables. Probability density functions. Probability distribution functions. Joint random variables. Introduction to stochastic processes: definitions, autocorrelation and autocovariance functions. Fundamentals of stochastic processes.
Reference texts
Roy. D. Yates, David J. Goodman, Probability and Stochastic Processes, John Wiley & Sons Inc; 2nd International Edition, 2004.

Handouts by the instructor.
Educational objectives
The objective of this module is to provide the students with the knowledge to correctly apply probability theory and measurement theory. At the end of this class the student will have learned:

- the concept of continuous and discrete random variable and its PDF and CDF

- the concept of function of a random variable

- the concept of joint random variables and vector of random variables

- the concept of function of two random variables

- the concept of stochastic process and of its general properties

Moreover, he will be able to:

- solve exercises that require modeling using discrete, continuous and mixed random variables

- solve exercises using the concept of stochastic process
Prerequisites
Calculus I is mandatory. Students must also be able to perform simple mathematical modeling in two dimensions and capable to solve simple double integrals.
Teaching methods
Frontal lectures at the blackboard. Students are expected to provide active participation and show autonomous study capabilities. Proficiency in solving exercises can only be developed by complementing attendance of lectures with dedicated sessions in the solution of exercises at home.
Other information
Information about available services for people with disabilities and/or with learning disabilities, see:

http://www.unipg.it/disabilita-e-dsa
Learning verification modality
Written and oral tests.
The written examination consists in the resolution of exercises and multiple choice tests.
The oral examination covers all course content program and consists both in questions about the theory and in the solution of exercises. Its length is about 20-25 minutes.
Extended program
Set theory. Sample spaces and random events. How to assign probabilities: classical, empirical and subjective approach. Conditional probability. Total probability theorem. Bayes theorem. Combinatorial calculus: permutations, dispositions, combinations. Random variables. Cumulative3 distribution function. Probability density function. Discrete random variables: Bernoulli, geometrical, binomial, Pascal, uniform discrete. Mode, median, expected value. Transformed random variables. Expected value of a transformed random variable. Variance and standard deviation. Central and non-central moments. Conditional mass probability. Continuous random variables. Cumulative and density functions. Expected value. Probability models: uniform, exponential, Gaussian. Mixed random variables. Transformed continuous random variables. Conditional continuous random variables. Couples of random variables. Marginal probability density functions. Transformation of two random variables. Rayleigh and Rice probability models. Orthogonal random variables. Correlation, covariance. Correlation coefficient. Conditioning two random variables. Random vectors. Gaussian random vectors. Central limit theorem. De-Moivre Laplace formula. Introduction to stochastic processes. Moments. Wide-sense and strict-sense stationary random processes. Ergodic processes.
Condividi su