Insegnamento PROCESSI STOCASTICI ED EQUAZIONI DIFFERENZIALI STOCASTICHE

Corso
Matematica
Codice insegnamento
A002324
Curriculum
Matematica per l'economia e la finanza
Docente
Irene Benedetti
Docenti
  • Irene Benedetti
Ore
  • 42 ore - Irene Benedetti
CFU
6
Regolamento
Coorte 2022
Erogato
2022/23
Attività
Caratterizzante
Ambito
Formazione teorica avanzata
Settore
MAT/05
Tipo insegnamento
Obbligatorio (Required)
Tipo attività
Attività formativa monodisciplinare
Lingua insegnamento
ITALIANO
A richiesta il corso potrà essere effettuato in lingua inglese
Contenuti
Richiami di strumenti e tecniche di Probabilita'. Passeggiate aleatorie e catene di Markov. Martingale, processi stazionari, processi Gaussiani. Moto Browniano ed elementi di Calcolo Stocastico.
Testi di riferimento
Grimmett-Stirzaker: Probability and Random Processes; Clarendon Press, Oxford (1982).

A. Pascucci, PDE and Martingale Methods in Option Pricing, Bocconi University Press, Springer 2011
Obiettivi formativi
Conoscenze generali dei principali processi, padronanza dei metodi d'indagine, abilita' nel calcolo stocastico: ci si aspetta che lo studente acquisisca le nozioni fondamentali relative ai temi trattati, le sappia descrivere e ne conosca significato e utilita', e sia in grado di sviluppare un proprio procedimento d'indagine nella risoluzione di semplici quesiti.
Prerequisiti
Conoscenze di Calcolo di Probabilita' di base
Metodi didattici
Didattica frontale
Altre informazioni
Per l'orario di ricevimento si rimanda alla pagina:
https://www.unipg.it/personale/irene.benedetti/didattica

informazioni utili sul corso si trovano alla pagina dedicata sulla piattaforma

www.unistudium.unipg.it
Modalità di verifica dell'apprendimento
L'esame consiste in una prova orale della durata di circa 40 minuti. Durante la prova orale, lo studente deve dimostrare di aver appreso le nozioni e i teoremi principali visti a lezione. A richiesta dovrà essere in grado di riprodurre dimostrazioni ed eventualmente di applicare i concetti studiati allo svolgimento di semplici esercizi. La prova ha lo scopo di valutare le conoscenze acquisite dal candidato, la sua capacita' di elaborare e collegare tra loro i vari argomenti.

Per le date degli appelli si rimanda alla pagina:

https://www.dmi.unipg.it/didattica/corsi-di-studio-in-matematica/matematica-magistrale/calendario-esami

Nel caso in cui lo studente intenda anticipare l’esame in un anno precedente a quello programmato nel piano di studio, si raccomanda di frequentare il ciclo delle lezioni e di sostenere l’esame nel primo appello utile dopo che le lezioni medesime siano terminate, nel rispetto quindi del semestre di programmazione dell’insegnamento

Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa
Programma esteso
Alcuni richiami di Calcolo delle Probabilita'. Funzioni generatrici e loro proprieta'. Passeggiate aleatorie: distribuzioni, tempi di primo passaggio o ritorno, principio di riflessione e alcune conseguenze riguardanti i tempi di soggiorno. Catene di Markov: matrici di transizione, stati ricorrenti stati transienti, classificazione degli stati. Distribuzioni stazionarie, e loro legami con i tempi medi di ricorrenza. Conseguenze sulle passeggiate aleatorie. Processi stazionari, teorema ergodico e alcune conseguenze. Martingale: generalita', teoremi di convergenza, e caratterizzazione nel caso L_2. Teorema opzionale e formula di Wald. Processi gaussiani: generalita', esempi, processo di Wiener e sue proprieta'. Moto Browniano: esistenza, caratteristiche delle traiettorie, invarianza di scala, legge del logaritmo iterato, legge dell'arcoseno. Integrazione stocastica: integrale di Riemnn-Stieltjes, integrale di Ito. Formule di Ito e differenziali stocastici. Equazioni differenziali stocastiche: teorema di esistenza e unicita', metodi risolutivi nel caso lineare.
Condividi su