Insegnamento MATEMATICA ED INFORMATICA
Nome del corso di laurea | Scienze della terra e dell'ambiente |
---|---|
Codice insegnamento | A004719 |
Sede | PERUGIA |
Curriculum | Comune a tutti i curricula |
Docente responsabile | Irene Benedetti |
CFU | 12 |
Regolamento | Coorte 2024 |
Erogato | Erogato nel 2024/25 |
Erogato altro regolamento | |
Anno | 1 |
Periodo | Annuale |
Tipo insegnamento | Obbligatorio (Required) |
Tipo attività | Attività formativa integrata |
Suddivisione |
ELEMENTI DI ELABORAZIONE DEI DATI
Codice | A004720 |
---|---|
Sede | PERUGIA |
CFU | 6 |
Docente responsabile | Maria Cristina Burla |
Docenti |
|
Ore |
|
Attività | Base |
Ambito | Formazione matematica e informatica di base |
Settore | ING-INF/05 |
Tipo insegnamento | Obbligatorio (Required) |
Lingua insegnamento | Italiano |
Contenuti | Alfabetizzazione informatica: elaboratori di testi; foglio elettronico con applicazione a elementi di base della statistica descrittiva: distribuzioni di frequenza, rappresentazioni grafiche, valori medi, indici di variabilità, correlazione e regressione, e ai concetti elementari di probabilità con esempi di distribuzioni di probabilità. |
Testi di riferimento | Help delle applicazioni e appunti del docente |
Obiettivi formativi | Alla fine del corso lo studente deve dimostrare di padroneggiare un word processor producendo un opportuno documento e programmare una formula mediante foglio elettronico a partire da un set di dati con applicazioni ai concetti e alle metodologie di base della statistica descrittiva e del calcolo delle probabilità. |
Prerequisiti | Nessun prerequisito. Eventuali esperienze sull'uso del personal computer possono essere utili. |
Metodi didattici | Lezioni frontali con l'ausilio di personal computer ed esercitazioni individuali assistite. |
Modalità di verifica dell'apprendimento | La valutazione sarà effettuata tramite una prova scritta, il cui obiettivo è verificare la conoscenza dello studente circa l'uso di un foglio elettronico e di un editor di testo. Durante il corso sono previsti due esoneri riguardanti separatamente i due argomenti. Se lo studente supera i due esoneri è esentato dalla prova finale. Il primo esonero è previsto a metà del corso ed il secondo alla fine del corso. La durata di ciascuna prova sarà di circa 1 ora. La valutazione finale è data dalla media dei voti ottenuti nei due esoneri o nella prova finale. |
Programma esteso | Mediante l'uso di Libre Office il programma prevede: l'uso del foglio elettronico per inserimento e trattamento dati, inserimento di funzioni di libreria, inserimento funzioni logiche e grafici per applicazioni dei concetti di statistica descrittiva e calcolo della probabilità e per calcolo di formule matematiche; uso editor di testo per formattare un testo, introdurre titoli, tabelle, immagini e collegamenti ipertestuali; uso del tool formula per scrittura formule matematiche. |
MATEMATICA
Codice | GP004846 |
---|---|
Sede | PERUGIA |
CFU | 6 |
Docente responsabile | Irene Benedetti |
Docenti |
|
Ore |
|
Attività | Base |
Ambito | Formazione matematica e informatica di base |
Settore | MAT/05 |
Tipo insegnamento | Obbligatorio (Required) |
Lingua insegnamento | ITALIANO |
Contenuti | Introduzione ai concetti di base dell'Analisi Matematica. Algebra lineare. Calcolo di limiti, continuità e derivabilità per funzioni di una variabile, studio del grafico di funzioni di una variabile. Integrale di Riemann. |
Testi di riferimento | Stefano Barbero, Sunra J. N. Mosconi, Alessandro Portaluri, Matematica per le scienze Pearson, 2022 |
Obiettivi formativi | Questo corso fornisce gli strumenti matematici di base utili per ia comprensione degli argomenti trattati nei corsi di ambito specifico del Corso di Laurea Al termine dello svolgimento di entrambi i moduli in cui il corso è suddiviso, lo studente avrà acquisito: - le conoscenze fondamentali di analisi matematica, e di informatica, ad esempio, acquisito il calcolo della derivata per funzioni di una o più variabili e il calcolo di semplici integrali di funzioni di una variabile. Inoltre saprà effettuare uno studio completo di una funzione di una variabile e saper risolvere semplici problemi di ottimizzazione per funzioni di una variabile. - Abilità comunicative: avrà acquisito la capacità di esprimere i concetti fondamentali dell'analisi matematica e dell ‘informatica con un certo rigore. - Capacità di apprendimento: lo studente acquisirà la capacità di studiare e apprendere le nozioni di analisi matematica, anche al fine di utilizzarle per la risoluzione di semplici problemi di natura applicativa. |
Prerequisiti | Al fine di comprendere e saper applicare le tecniche descritte nell'insegnamento è necessario aver appreso ed assimilato i concetti matematici di base quali: elementi di base di geometria euclidea e analitica; risoluzione di equazioni e disequazioni algebriche di primo e secondo grado; definizioni e prime proprietà delle funzioni polinomiali, esponenziali, logaritmiche e trigonometriche. |
Metodi didattici | Lezioni frontali (52 ore) in aula su tutti gli argomenti del corso. Verranno presentati esempi ed esercizi per spiegare ed analizzare i concetti teorici. Si invita a visitare la pagina di unistudium dedicata al corso: https://www.unistudium.unipg.it/unistudium/login/index.php dove verranno caricati materiali utili per la comprensione degli argomenti svolti a lezione quali materiale didattico relativo alle lezioni frontali, esercizi svolti o da svolgere, fac simile di prove d'esame. E' prevista una attività di tutorato. Tale tutorato, coordinato dal docente, avrà come obbiettivo quello di aiutare gli studenti nello studio e nella comprensione degli argomenti del corso, con particolare attenzione allo svolgimento degli esercizi. |
Altre informazioni | Il modulo Matematica si svolge in 52 ore. Il calendario delle lezioni e' disponibile alla pagina web https://www.fisgeo.unipg.it/fisgejo/index.php/it/didattica/corsi-di-laurea-in-geologia/laurea-triennale-g.html Quando possibile, le lezioni frontali verranno coadiuvate da due ore settimanali di attività di studio collettivo in presenza dell'insegnante oppure di un tutore. Il ricevimento studenti per il corso si articola secondo l'orario indicato sulla pagina web: https://www.unipg.it/personale/irene.benedetti/didattica, presso lo studio del docente al sesto piano del Dipartimento di Matematica e Informatica. Il calendario degli esami è reperibile all'indirizzo: http://www.fisica.unipg.it/fisgejo/index.php/it/didattica/corsi-di-laurea-in-geologia/laurea-triennale-g/calendario-degli-esami-tg.html Nell'orario di ricevimento gli studenti verranno seguiti in modo personalizzato. Durante la prova scritta sono vietati calcolatrici scientifiche, telefoni cellulari, tablet, etc.... pena l'esclusione dalla prova. |
Modalità di verifica dell'apprendimento | Alla fine di entrambi i due moduli avrà luogo l'esame che consisterà nello svolgimento di una prova scritta riguardante il programma svolto nei due moduli. La prova scritta consiste nella soluzione di alcuni problemi a risposta aperta relativi agli argomenti presentati nei due moduli. La prova ha la durata di non più di tre ore ed è finalizzata a verificare le capacità di saper utilizzare gli strumenti matematici che sono stati forniti durante tutto il corso oltre che di applicare correttamente le conoscenze teoriche. La prova scritta può essere sostituita da una prova in itinere. Tale prova è riservata agli studenti che abbiano frequentato almeno il 75% delle lezioni del corso. Gli studenti con certificazione DSA devono - presentare almeno due settimane prima della prova d'esame (esonero o appello ufficiale) via mail o cartacea la relativa documentazione alla Prof. Irene Benedetti. Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa |
Programma esteso | Elementi di Algebra lineare: Matrici, prodotti tra vettori nel piano e nello spazio. Determinante e rango: regole di calcolo e significato geometrico. Sistemi di equazioni lineari, Teorema di Ruche'-Capelli. Regola di Cramer per la soluzione di sistemi lineari. Esempi di sistemi parametrici. Calcolo: Limiti di successioni e limiti di funzioni di una variabile. Teorema dei carabinieri, teorema della permanenza del segno, algebra dei limiti, limiti notevoli, , calcolo dei limiti. Continuità, asintoti. Definizione e calcolo di derivate e integrali fondamentali. |