Insegnamento FLUIDODINAMICA DELLE MACCHINE

Corso
Ingegneria industriale
Codice insegnamento
A001206
Curriculum
Comune a tutti i curricula
Docente
Michele Battistoni
Docenti
  • Michele Battistoni
Ore
  • 72 ore - Michele Battistoni
CFU
9
Regolamento
Coorte 2022
Erogato
2022/23
Attività
Caratterizzante
Ambito
Ingegneria meccanica
Settore
ING-IND/08
Tipo insegnamento
Obbligatorio (Required)
Tipo attività
Attività formativa monodisciplinare
Lingua insegnamento
Italiano
Contenuti
Fondamenti di fluido-dinamica computazionale (CFD - Computational Fluid Dynamics).
Flussi turbolenti.
Flussi chimicamente reattivi.
Flussi multifase.
Applicazioni alla modellazione di macchine a fluido, di flussi interni e di flussi esterni.
Introduzione all'High Performance Computing (HPC).
Testi di riferimento
Andersson B., et al.: Computational Fluid Dynamics for Engineers, Cambridge Press 2012
Obiettivi formativi
Lo studente acquisisce capacità di schematizzazione di un problema per la sua simulazione fluidodinamica (CFD - Computational Fluid Dynamics), di scelta dei modelli più opportuni e di analisi dei risultati. Oggetto di studio sono la termo-fluidodinamica, la combustione e i flussi multifase, in particolare per motori a combustione interna, spray di combustibile, combustori, turbogas, impianti di potenza, aerodinamica esterna. Conoscenza ed uso di piattaforme di High Performance Computing (HPC).
Prerequisiti
conoscenza dei contenuti del corso di macchine a fluido e del corso di motori a combustione interna.
Metodi didattici
- lezioni frontali
- esercitazioni al calcolatore
Altre informazioni

Modalità di verifica dell'apprendimento
progetto, esercitazioni e prova orale

Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa
Programma esteso
1. Fondamenti di fluidodinamica. Regimi di flusso: comprimibili ed incomprimibili, laminari e turbolenti, singola fase e multi-fase. Modellazione: equazioni di conservazione in varie forme, equazione di stato, proprietà di trasporto, viscosità, diffusività di massa e del calore.
2. Introduzione alla fluido-dinamica computazionale (CFD). Metodi di discretizzazione spaziale e temporale, accuratezza, stabilità. Equazione con convezione e diffusione. Accoppiamento tra le equazioni, algoritmi di soluzione pressure-based e density-based. Solutori segregati o accoppiati.
3. Fondamenti di turbolenza: cascata dell'energia e scale di turbolenza. Introduzione alla modellazione della turbolenza: Direct Numerical Simulation (DNS), Large Eddy Simulations) LES, Reynolds Averaged Navier-Stokes (RANS). Trattamento dello strato limite.
4. Miscelamento turbolento e flussi reattivi. Modellazione del mixing turbolento e di flussi reagenti. Combustione premiscelata e non-premiscelata. Interazione tra cinetica chimica e turbolenza.
5. Flussi multifase. Cenni alla modellazione con metodi Euleriani two-fluid e single-fluid, metodi Lagrangiani. Interazioni tra le fasi.
6. Applicazione della CFD allo studio e al design di macchine a fluido, motori a combustione interna e flussi esterni. Simulazioni per analisi e verifica di design.
7. Introduzione all'High Performance Computing (HPC).
Condividi su