Insegnamento GEOMETRIA I
- Corso
- Matematica
- Codice insegnamento
- GP006038
- Curriculum
- Comune a tutti i curricula
- Docente
- Daniele Bartoli
- Docenti
-
- Daniele Bartoli
- Ore
- 63 ore - Daniele Bartoli
- CFU
- 9
- Regolamento
- Coorte 2022
- Erogato
- 2022/23
- Attività
- Base
- Ambito
- Formazione matematica di base
- Settore
- MAT/03
- Tipo insegnamento
- Obbligatorio (Required)
- Tipo attività
- Attività formativa monodisciplinare
- Lingua insegnamento
- ITALIANO
- Contenuti
- Algebra lineare.
Geometria analitica elementare nel piano e nello spazio. - Testi di riferimento
- A. Basile, Algebra lineare e geometria cartesiana. Margiacchi-Galeno Editrice, 2010.
- Obiettivi formativi
- Acquisizione del pensiero geometrico anche attraverso gli strumenti dell'algebra lineare.
- Prerequisiti
- Scomposizioni di polinomi. Risoluzione di equazioni algebriche di primo e secondo grado. Equazioni binomie e trinomie. Equazioni algebriche risolubili con l'uso della regola di Ruffini. Geometria analitica elementare nel piano. Trigonometria.
- Metodi didattici
- Lezioni frontali accompagnate da esercizi, stretto contatto con gli studenti, collaborazione eventuale (volontaria) con gli studenti stessi in aula.
- Altre informazioni
- La frequenza non è obbligatoria ma vivamente consigliata.
- Modalità di verifica dell'apprendimento
- Una prova scritta della durata di 120 minuti relativa alla soluzione di 8 quesiti (4 esercizi di algebra lineare uno dei quali relativo ad un campo finito, 2 esercizi di geometria analitica elementare nello spazio, due esercizi sulla sfera e/o la circonferenza nello spazio) ed una prova orale della durata di 15 / 30 minuti.
Gli esercizi della prova scritta non richiederanno calcoli elaborati e lo studente ben preparato dovrebbe poter risolvere ciascuno di essi in al massimo 10 minuti. Tali esercizi sono finalizzati a verificare le capacità dello studente a saper maneggiare gli strumenti algebrico-geometrici trattati in teoria.
Nella prova orale si verificheranno le capacità espositive dello studente con particolare attenzione al rigore del linguaggio matematico ed alla capacità di sintesi.
Per informazioni sui servizi di supporto agli studenti con disabilità e/o DSA visita la pagina http://www.unipg.it/disabilita-e-dsa - Programma esteso
- Algebra lineare. Spazi vettoriali. Dipendenza lineare. Teorema dello scambio. Basi. Teorema di equicardinalità delle basi. Dimensione. Teorema del completamento della base. Sottospazi. Intersezione e somme di sottospazi. Relazione di Grassmann. Applicazioni lineari. Nucleo ed immagine. Teorema fondamentale di isomorfismo tra spazi vettoriali. Lo spazio vettoriale delle matrici m x n. Prodotto di matrici. Matrice associata ad una applicazione lineare. Determinante di una matrice quadrata. Matrice inversa. Rango di una matrice. Sistemi lineari. Teorema di Rouché-Capelli. Sistemi omogenei. Lo spazio delle soluzioni di un sistema omogeneo. Teorema di Cramer. Algoritmo generale per determinare l'insieme delle soluzioni di un sistema lineare compatibile.
Geometria nel piano e nello spazio. Riferimenti cartesiani. Segmenti orientati. Vettori geometrici. Vettori paralleli e complanari. Coordinate dei vettori geometrici. Equazioni parametriche di una retta. Equazione di un piano. Intersezione e parallelismo tra piani. Equazioni cartesiane di una retta. Fasci di piani. Intersezione e parallelismo tra una retta e un piano. Intersezione e parallelismo tra rette. Rette sghembe. Prodotto scalare. Distanza tra due punti. Angolo tra due rette. Distanza punto-retta nel piano. Distanza punto-piano. Angolo tra due piani. Angolo tra retta e piano. Distanza punto-retta nello spazio. Distanza tra due rette sghembe. Sfera. Circonferenza nello spazio.