Insegnamento ELABORAZIONE NUMERICA E STATISTICA DEI SEGNALI

Corso
Ingegneria informatica e robotica
Codice insegnamento
70A00910
Curriculum
Comune a tutti i curricula
Docente
Fabrizio Frescura
Docenti
  • Fabrizio Frescura
Ore
  • 72 ore - Fabrizio Frescura
CFU
9
Regolamento
Coorte 2021
Erogato
2021/22
Attività
Affine/integrativa
Ambito
Attività formative affini o integrative
Settore
ING-INF/03
Tipo insegnamento
Obbligatorio (Required)
Tipo attività
Attività formativa monodisciplinare
Lingua insegnamento
ITALIANO
Contenuti
Il corso è diviso in alcune unità didattiche unità:
Formati numerici per l'elaborazione del segnale digitale
Segnali e Sistemi Tempo Discreti
Trasformata discreta di Fourier e stima spettrale
Progettazione Filtri FIR
Trasforma Z e funzione di trasferimento
Interpolazione, decimazione e conversione della Frequenza di campionamento
Introduzione all'elaborazione statistica dei segnali:
Analisi spettrale non parametrica
Predizione Lineare
Testi di riferimento
S. Orfanidis, “Introduction To Signal Processing”, Prentice Hall
M. H. Hayes, “Statistical Digital Signal Processing And Modeling”, John Wiley & Sons
S. Orfanidis, “Optimum Signal Processing”, Prentice Hall
Obiettivi formativi
Comprendere simulare e progettare Filtri numerici (FIR/IIR) con gli strumenti software di progettazione (es. Matlab)
Comprendere, simulare e progettare (Matlab) schemi di stima spettrale basati sull'impiego di DFT/FFT sia per segnali stazionari che per segnali non stazionari
Comprendere, simulare e progettare (Matlab) schemi di conversione della frequenza di campionamento con tecnica diretta e polifase
Comprendere, simulare e progettare (Matlab) schemi di analisi statistica dei segnali (Predizione Lineare, Stima Spettrale).
Prerequisiti
Teoria dei segnali
Teoria dei sistemi
Elettronica dei sistemi digitali
Fondamenti di telecomunicazioni
Teoria della probabilità e della misurazione
Architetture dei calcolatori e sistemi operativi
Metodi didattici
Le lezioni si svolgono con didattica frontale di tipo teorico con Slides e integrazione alla lavagna degli argomenti e con lo svolgimento di esercizi di natura progettuale. Sono fortemente incoraggiate le domande e gli interventi da parte degli studenti in modaltà interattiva durante tutta la lezione.
Per ogni Unità didattica sono poi svolte esercitazioni in Matlab sui temi di riferimento dell'Unità Didattica stessa.
Modalità di verifica dell'apprendimento
Il test finale dell'esame è costituito se due test separati:
1) Una progetto di signal processing al PC (Matlab)
2) Un esame orale
Programma esteso
Unità Didattica: Rappresentazione numeriche nelle dispositivi digitali per l’elaborazione dei segnali (8 ore)
Rappresentazione Numerica Fixed Point, Rappresentazione Numerica Floating Point.
Stima della pdf di processi aleatori: stazionari, stazionari ed ergodici e non stazionari.
Quantizzazione uniforme e Quantizzazione Ottima - Quantizzazione non lineare. Design di schemi di implementazione completamente digitali.

Unità Didattica:. Segnali e sistemi tempo-discreto (4)
Generalità sull' elaborazione dei segnali. Segnali tempo-discreto, analogici, digitali. Sistemi di elaborazione tempo-discreto. Stabilità e Causalità. Sistemi lineari invarianti alla traslazione (LTI). Sistemi descritti da equazioni alle differenze lineari a coefficienti costanti. Esercitazioni in Matlab

Unità Didattica: Trasformata di Fourier discreta e stima spettrale (10)
Spettro in Frequenza – DTFT. Campionamento della trasformata di Fourier. Trasformata di Fourier discreta (DFT). Calcolo della IDFT. Fast Fourier Transform. Convoluzione circolare. Uso della DFT/FFT nell' analisi spettrale dei segnali determinati. Uso della DFT/FFT nell' analisi spettrale di segnali stazionari, Periodogramma. Risoluzione. DFT tempo-variante per segnali non-stazionari. Spettrogramma. Esercitazioni in Matlab
Unità Didattica: Progetto di filtri FIR (10 ore)
Progetto di filtri FIR con l'uso di finestre. Progetto Filtri FIR con la Finestra di Kaiser. Progetto Filtri con il metodo del campionamento in Frequenza. Tecniche di Progetto di filtri in Matlab. Esercitazioni in Matlab.

Unità didattica: z-Transforms e Transfer Functions (12 ore)
Proprietà fondamentali, Regione di Convergenza, Causalità e Stabilità, Spettro in Frequenza, Trasformata Z inversa, Descrizioni Equivalenti dei Filtri Digitali, Funzione di Trasferimento, Risposta Sinusoidale, Risposta Regime Stazionario, Risposta al Transitorio, Progettazione Filtri con piazzamento di poli e zeri: Filtri del Primo Ordine, Risuonatori Parametrici ed Equalizzatori, Filtri Notch e Filtri Comb. Esercitazioni in Matlab
Unità Didattica: Interpolazione, Decimazione e Sovra-campionamento (12 ore)
Interpolazione e sovra-campionamento. Progetto di Filtri Interpolatori: forma diretta, forma polifase. Esempi di progetto: DAC equalization, Multistage Equalization. Decimazione. Convertitore di sampling rate. Quantizzatori Noise Shaping. Esercitazioni in Matlab

Unità Didattica: Introduzione alla elaborazione digitale statistica dei segnali (20 ore)
Analisi spettrale non parametrica: Introduzione, Analisi spettrale non parametrica, Stima della potenza di segnali correlati gaussiani, risoluzione spettrale e dispersione, la dispersione della stima spettrale, La polarizzazione della stima spettrale, il periodogramma, la stima dell’autocorrelazione. Analisi Spettrale Parametrica, Introduzione, Analisi tutti zeri (MA) , troncamento della funzione di autocorrelazione , analisi tutti poli (AR), La stima spettrale AR, Predizione lineare, Errore di predizione, Predizione lineare e analisi AR, Allungamento del predittore, La ricorsione di Levinson,Vantaggi computazionali, Filtro a traliccio non ricorsivo.
Condividi su