Insegnamento HIGH PERFORMANCE COMPUTING
- Corso
- Informatica
- Codice insegnamento
- 55961406
- Curriculum
- Comune a tutti i curricula
- Docente
- Osvaldo Gervasi
- Docenti
-
- Osvaldo Gervasi
- Ore
- 78 ore - Osvaldo Gervasi
- CFU
- 9
- Regolamento
- Coorte 2023
- Erogato
- 2023/24
- Attività
- Caratterizzante
- Ambito
- Discipline informatiche
- Settore
- ING-INF/05
- Tipo insegnamento
- Obbligatorio (Required)
- Tipo attività
- Attività formativa monodisciplinare
- Lingua insegnamento
- INGLESE
- Contenuti
- Introduzione all’High Performance Computing (HPC) e all'High Throughput Computing (HTC); Implementazione e amministrazione di Cluster. Costruzione di servizi scalabili ed in alta affidabilità. Il progetto Condor per High Throughput Computing. Architettura dei sistemi Cloud; Gestione e Bilanciamento dei Processi in ambiente Cluster e Cloud, GPU Computing; OpenCL. Cloud Computing. Virtualizzazione, Docker, Sistemi Kubernetes
- Testi di riferimento
- J. Garrison and K. Nova, Cloud Native Infrastructure-Patterns for Scalable Infrastructure and Applications in a Dynamic Environment, O’Reilly and Associates, 2018, ISBN: 978-1-492-03969-3
Materiale didattico fornito dal docente con riferimenti bibliografici - Obiettivi formativi
- L'obiettivo principale del corso è quello di introdurre lo studente allo studio di sistemi emergenti che sono tra l'altro alla base delal realizzazione dei moderni data center e al rilascio di ambienti in alta affidabilità, oltre a presentare i sistemi ad alte prestazioni, fondamentali per l'avanzamento della conoscenza e della scienza, e per erogare servizi moderni, inclusi quelli in ambiente mobile.Le principali conoscenze acquisite saranno:disegno e implementazione di sistemi Cluster: principali problematiche e modalità di istallazione e configurazione Servizi ad alta affidabilità e sistemi ad alte prestazioni L'ambiente Condor per la realizzazione di Cluster High Throughput. GPGPU Computing e programmazione OpenCL di GPU: per incrementare le performances di molti applicativi. Cloud Computing: disegno e implementazione di cloud ibride. Ambienti di virtualizzazione, Docker e sistemi Kuberntes.
- Prerequisiti
- Nessun prerequisito è richiesto allo studente; si considera che lo studente abbia comunque dimestichezza con il disegno e la configurazione dei servizi della rete Internet. La conoscenza approfondita dei sistemi operativi open source come Linux agevola l'acquisizione dei concetti del corso. Nel corso delle lezioni verranno comunque forniti esempi e casi d'uso volti ad agevolare l'apprendimento dei concetti illustrati a lezione.
- Metodi didattici
- Lezione frontale con l'ausilio di strumenti multimediali (slides, video, etc). Esercitazione in sala computer.
- Modalità di verifica dell'apprendimento
- L'esame prevede un esame scritto sulla piattaforma Libreeol (Https://libreeol.org) seguito da esame orale di circa 30 minuti nel quale lo studente deve illustrare un progetto implementato e concordato con il docente, dimostrando la padronanza dei concetti richiesti, una adeguata proprietà di linguaggio e la capacità di organizzare i concetti da esporre in modo adeguato.
- Programma esteso
- Il corso introduce gli studenti alle moderne tecnologie che permettono la realizzazione di data center e di erogare applicazioni in ambienti di alta affidabilità e bilanciamento del carico. In particolare verranno trattati i temi seguenti:Introduzione all'High Performance Computing (HPC) e all'High Throughput Computing (HTC); Beowulf clusters; Implementazione e amministrazione di Cluster: Costruzione di servizi scalabili; Realizzazione di servizi ad alta affidabilità in ambiente Cluster: Heartbeat, Corosync, PaceMaker. Condor: istallazione, implementazione e design di un Cluster High Throughput. GPGPU Computing. linguaggio di programmazione OpenCL. Cloud Computing: presentazione e implementazione di una Cloud ibrida. Sistemi di virtualizzazione; Docker; Sistemi Kubernetes.
- Obiettivi Agenda 2030 per lo sviluppo sostenibile
- Questo insegnamento concorre alla realizzazione degli obiettivi ONU dell'Agenda 2030 per lo Sviluppo Sostenibile